INTEGRATED CIRCUITS

DATA SHEET

74ALVC16244/74ALVCH16244 2.5V/3.3V 16-bit buffer/line driver (3-State)

Product specification
Supersedes data of 1997 Mar 21
IC24 Data Handbook

Philips Semiconductors Product specification

16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Direct interface with TTL levels
- Bus hold on data inputs (74ALVCH16244 only)
- Output drive capability 50Ω transmission lines @ 85°C
- Current drive ±24 mA at 3.0 V

DESCRIPTION

The 74ALVC16244(74ALVCH16244) is a 16-bit non-inverting buffer/line driver with 3-State outputs. The device can be used as four 4-bit buffers, two 8-bit buffers or one 16-bit buffer. The 3-State outputs are controlled by the output enable inputs $1\overline{OE}$ and $2\overline{OE}$. A HIGH on nOE causes the outputs to assume a high impedance OFF-state.

The 74ALVCH16244 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

The 74ALVC16244 has 5V tolerant inputs.

PIN CONFIGURATION

	─ ─
1 0E 1	48 2 OE
1Y0 2	47 1A0
1Y1 3	46 1A1
GND 4	45 GND
1Y2 5	44 1A2
1Y3 6	43 1A3
V _{CC} 7	42 V _{CC}
2Y0 8	41 2A0
2Y1 9	40 2A1
GND 10	39 GND
2Y2 11	38 2A2
2Y3 12	37 2A3
3Y0 13	36 3A0
3Y1 14	35 3A1
GND 15	34 GND
3Y2 16	33 3A2
3Y3 17	32 3A3
V _{CC} 18	31 V _{CC}
4Y0 19	30 4A0
4Y1 20	29 4A1
GND 21	28 GND
4Y2 22	27 4A2
4Y3 23	26 4A3
4 0E 24	25 3 OE
	SW00194

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

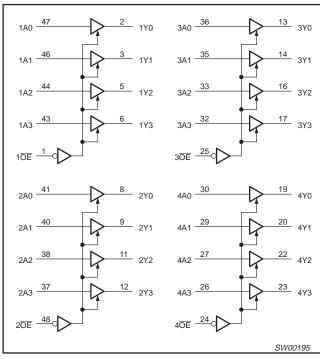
SYMBOL	PARAMETER	CONDITION	TYPICAL	UNIT	
t _{PHL} /t _{PLH}	Propagation delay An to Yn	V _{CC} = 2.5V, CL = 30pF V _{CC} = 3.3V, CL = 50pF	1.9 1.9	ns	
C _I	Input capacitance			5.0	pF
	Power dissipation capacitance per buffer	$V_{L} = GND \text{ to } V_{CC}^{-1}$	Outputs enabled	25	nE
C _{PD}		$\Lambda_1 = QMD$ to Λ^{CC} .	Outputs disabled	4	pF

NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$\begin{split} P_D &= C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma \; (C_L \times V_{CC}{}^2 \times f_o) \; \text{where: } f_i = \text{input frequency in MHz; } C_L = \text{output load capacitance in pF;} \\ f_o &= \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \Sigma \; (C_L \times V_{CC}{}^2 \times f_o) = \text{sum of the outputs.} \end{split}$$

ORDERING INFORMATION


OTTO LITTO INTO OTTO IN				
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ALVC16244 DL	AC16244 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVC16244 DGG	AC16244 DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ALVCH16244 DL	ACH16244 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVCH16244 DGG	ACH16244 DGG	SOT362-1

16-bit buffer/line driver (3-State)

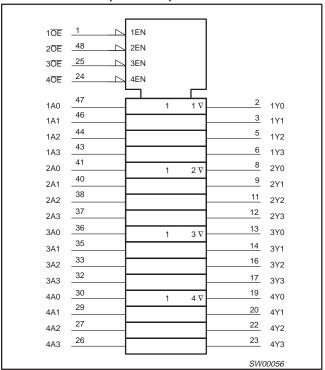
PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	1 OE	Output enable input (active LOW)
2, 3, 5, 6	1Y0 to 1Y3	Data outputs
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage
8, 9, 11, 12	2Y0 to 2Y3	Data outputs
13, 14, 16, 17	3Y0 to 3Y3	Data outputs
19, 20, 22, 23	4Y0 to 4Y3	Data outputs
24	4 OE	Output enable input (active LOW)
25	3 OE	Output enable input (active LOW)
30, 29, 27, 26	4A0 to 4A3	Data inputs
36, 35, 33, 32	3A0 to 3A3	Data inputs
41, 40, 38, 37	2A0 to 2A3	Data inputs
47, 46, 44, 43	1A0 to 1A3	Data inputs
48	2 O E	Output enable input (active LOW)

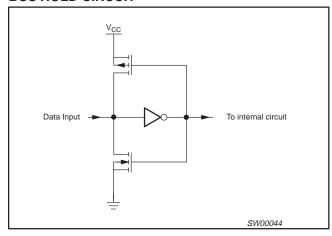
LOGIC SYMBOL

FUNCTION TABLE

INP	JTS	OUTPUT					
nOE	n OE nAn						
L	L	L					
L	Н	Н					
Н	Х	Z					


H = HIGH voltage level

L = LOW voltage level


X = don't care

Z = high impedance OFF-state

LOGIC SYMBOL (IEEE/IEC)

BUS HOLD CIRCUIT

Philips Semiconductors Product specification

16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

RECOMMENDED OPERATING CONDITIONS

CVMDOL	PARAMETER	CONDITIONS	LIM	IITS	UNIT
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNII
	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V
	DC supply voltage (for low-voltage applications)		1.2	3.6	
		For data input pins with bus hold	0	V _{CC}	
VI	DC Input voltage range	For data input pins without bus hold	0	5.5	V
		For control pins	0	5.5	
V _O	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	V _{CC} = 2.3 to 3.0V V _{CC} = 3.0 to 3.6V	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	V	
V _{CC}	DC supply voltage		-0.5 to +4.6		
I _{IK}	DC input diode current	V ₁ < 0	-50	mA	
		For data inputs with bus hold ²	-0.5 to V _{CC} +0.5		
V_{I}	DC input voltage	For data inputs without bus hold ²	-0.5 to +5.5	V	
		For control pins ²	-0.5 to +5.5		
I _{OK}	DC output diode current	$V_{O} > V_{CC}$ or $V_{O} < 0$	±50	mA	
V _O	DC output voltage	Note 2	-0.5 to V _{CC} +0.5	V	
Ι _Ο	DC output source or sink current	$V_O = 0$ to V_{CC}	±50	mA	
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	
P _{TOT}	Power dissipation per package -plastic medium-shrink (SSOP) -plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K	850 600	mW	

NOTES:

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Philips Semiconductors Product specification

16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

DC CHARACTERISTICS

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp	= -40°C to +	85°C	UN
			MIN	TYP ¹	MAX	1
		V _{CC} = 1.2V	V _{CC}			
\/	LUCLLlovelloput voltage	V _{CC} = 1.8V	0.7*V _{CC}	0.9] 、
V_{IH}	HIGH level Input voltage	V _{CC} = 2.3 to 2.7V	1.7	1.2		1 `
		V _{CC} = 2.7 to 3.6V	2.0	1.5		1
		V _{CC} = 1.2V			GND	Г
\ /	LOW love library trial to an	V _{CC} = 1.8V		0.9	0.2*V _{CC}] ,
V_{IL}	LOW level Input voltage	V _{CC} = 2.3 to 2.7V		1.2	0.7	1
		V _{CC} = 2.7 to 3.6V		1.5	0.8	1
		$V_{CC} = 1.8 \text{ to } 3.6 \text{V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu\text{A}$	V _{CC} -0.2	V _{CC}		
		$V_{CC} = 1.8V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -6\text{mA}$	V _{CC} -0.4	V _{CC} -0.10		1
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -6$ mA	V _{CC} -0.3	V _{CC} -0.08		1
V_{OH}	HIGH level output voltage	$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5	V _{CC} -0.17		١ ،
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -18$ mA	V _{CC} -0.6	V _{CC} -0.26		1
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5	V _{CC} -0.14		1
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -24\text{mA}$	V _{CC} -1.0	V _{CC} -0.28		1
		$V_{CC} = 1.8 \text{ to } 3.6 \text{V}; \ V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu\text{A}$		GND	0.20	Г
		$V_{CC} = 1.8V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.09	0.30	1
		$V_{CC} = 2.3V; V_{I} = V_{IH} \text{ or } V_{II}; I_{O} = 6\text{mA}$		0.07	0.20	t
V_{OL}	LOW level output voltage	$V_{CC} = 2.3V$, $V_I = V_{IH}$ or V_{IL} , $I_O = 12mA$		0.15	0.40	┪、
	, , ,	$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 18mA$		0.23	0.60	t
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.14	0.40	1
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} : $I_O = 24$ mA		0.27	0.55	1
	Input leakage current per data pin with bus hold	V _{CC} = 1.8 to 3.6V; V _I = V _{CC} or GND		0.1	5	Г
II	Input leakage current per data pin without bus hold	V _{CC} = 1.8 to 3.6V; V _I = 5.5 V or GND		0.1	5	μ
	Input leakage current per control pin	V _{CC} = 1.8 to 3.6V; V _I = 5.5 V or GND		0.1	5	
		$V_{CC} = 1.8 \text{ to } 2.7 \text{V}; V_{I} = V_{CC} \text{ or GND}$		0.1	10	
I _{IHZ} /I _{ILZ}	Input current for common I/O pins	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND		0.1	15	μ
	O Older and and OFF adala and and	V_{CC} = 1.8 to 2.7V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	5	
loz	3-State output OFF-state current	V_{CC} = 2.7 to 3.6V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	10	μ
	Quiescent supply current	$V_{CC} = 1.8 \text{ to } 2.7 \text{V}; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$		0.1	20	Π.,
Icc	Quiescent supply current	$V_{CC} = 2.3 \text{ to } 3.6 \text{V}; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$		0.2	40	μ
	Additional quiescent supply current given per data I/O pin with bus hold			150	750	
ΔI_{CC}	Additional quiescent supply current given per data I/O pin without bus hold	$V_{CC} = 2.7V$ to 3.6V; $V_1 = V_{CC} - 0.6V$; $I_0 = 0$		5	500	μ
	Additional quiescent supply current given per control pin			5	500	1

Philips Semiconductors Product specification

16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

DC ELECTRICAL CHARACTERISTICS (Continued)

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS	Temp	= -40°C to +	85°C	UNIT	
			MIN	TYP ¹	MAX		
I _{BHL} ²	Bus hold LOW sustaining current	$V_{CC} = 2.3V; V_I = 0.7V$	45	-		μА	
I 'BHL	Bus floid LOW sustaining current	V _{CC} = 3.0V; V _I = 0.8V	75	150		μΑ	
I _{BHH} ²	Bus hold HIGH sustaining current	V _{CC} = 2.3V; V _I = 1.7V	-45			μА	
'ВНН		$V_{CC} = 3.0V; V_I = 2.0V$	-75	-175		μΛ	
I _{BHLO} ²	Bus hold LOW overdrive current	V _{CC} = 2.7V	300			μА	
IBHLO	Bus noid LOVV overdrive current	V _{CC} = 3.6V	450			μΛ	
І _{внно} 2	Bus hold HIGH overdrive current	V _{CC} = 2.7V	-300			μА	
I IRHHO		V _{CC} = 3.6V	-450] μΑ	

NOTES:

- 1. All typical values are at $T_{amb} = 25^{\circ}C$.
- 2. Valid for data inputs of bus hold parts.

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE AND V_{CC} < 2.3V

GND = 0V; $t_r = t_f \le 2.0$ ns; $C_L = 30$ pF

SYMBOL	PARAMETER	WAVEFORM	Vcc	= 2.3 to 2	2.7V	\	/ _{CC} = 1.8	V _{CC} = 1.2V	UNIT	
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	TYP ¹	
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	1, 3	1.0	1.9	3.7	1.5	2.8	5.1	5.8	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nYn	2, 3	1.0	2.5	4.9	1.5	3.8	7.1	8.4	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nYn	2, 3	1.0	2.1	4.1	1.5	3.1	3.5	5.9	ns

NOTES:

- 1. All typical values are measured at $T_{amb} = 25$ °C.
- 2. Typical value is measured at $V_{CC} = 2.5V$

AC CHARACTERISTICS FOR $V_{CC} = 3.0 \text{V}$ TO 3.6V RANGE AND $V_{CC} = 2.7 \text{V}$

GND = 0V; $t_r = t_f \le 2.5 \text{ns}$; $C_L = 50 \text{pF}$

SYMBOL	PARAMETER	WAVEFORM	V _C	$_{\text{C}}$ = 3.3 \pm 0.	.3V	١	UNIT		
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	1, 3	1.0	1.9	3.0	1.0	2.1	3.6	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nYn	2, 3	1.0	2.3	4.0	1.0	2.9	4.9	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nYn	2, 3	1.0	2.7	4.1	1.0	3.0	4.5	ns

NOTES

- 1. All typical values are measured at $T_{amb} = 25$ °C.
- 2. Typical value is measured at $V_{CC} = 3.3V$

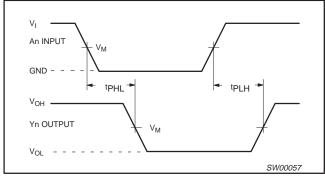
1998 Jun 29 6

Philips Semiconductors Product specification

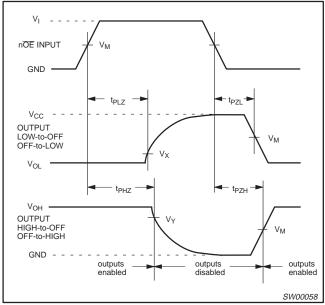
16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

AC WAVEFORMS FOR $V_{CC} = 2.3V$ TO 2.7V AND V_{CC} < 2.3V RANGE

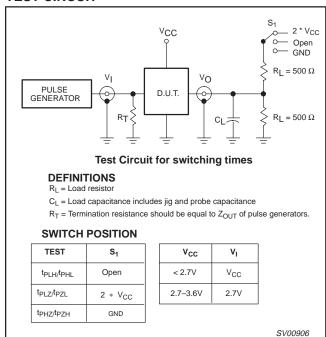

 $V_{M} = 0.5 V_{CC}$ $V_{X} = V_{OL} + 0.15V$ $V_{Y} = V_{OH} - 0.15V$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.


AC WAVEFORMS FOR $V_{CC} = 3.0V$ TO 3.6V AND V_{CC} = 2.7V RANGE

 V_M = 1.5 V V_X = V_{OL} + 0.3V V_Y = V_{OH} -0.3V V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

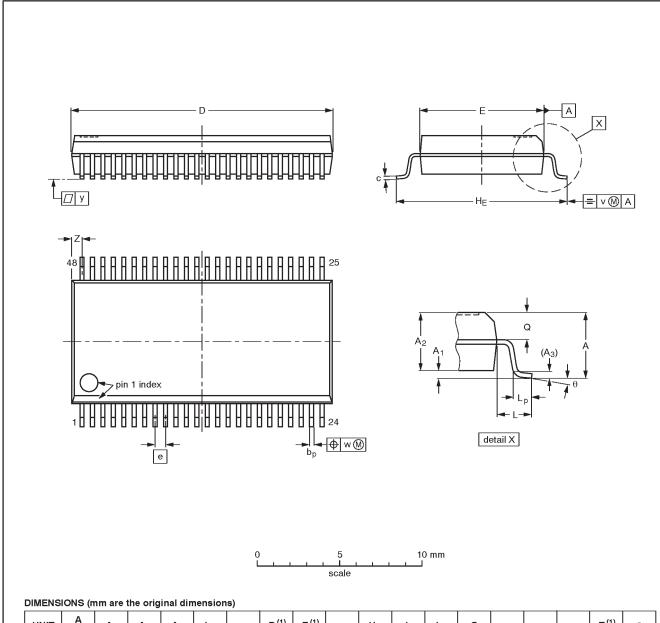
V_I = 2.7V



Waveform 1. Input (An) to output (Yn) propagation delay times

Waveform 2. 3-State enable and disable times

TEST CIRCUIT


Waveform 3. Load circuitry for switching times

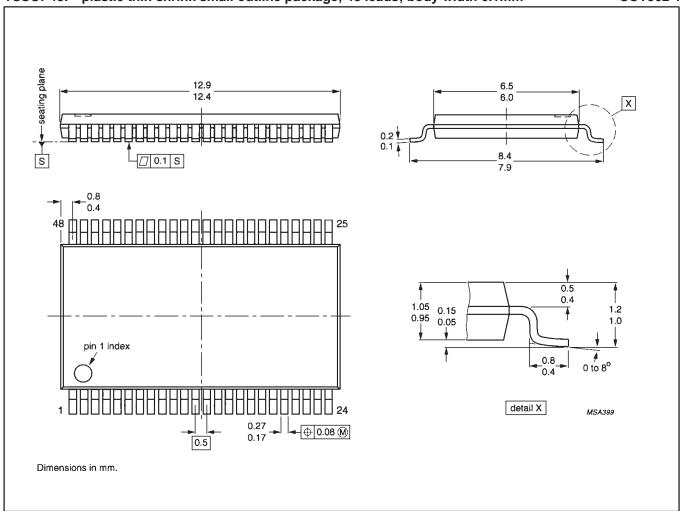
2.5V/3.3V 16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°


Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT370-1		MO-118AA				93-11-02 95-02-04

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

Philips Semiconductors Product specification

2.5V/3.3V 16-bit buffer/line driver (3-State)

74ALVC16244/ 74ALVCH16244

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Date of release: 06-98

Document order number: 9397-750-04536

Let's make things better.

Philips Semiconductors

